Chapter 2: Moving from Cto C++ 53

location of the actual parameter. Thus, any access made to reference formal parameters in swap ()
refers to the actual parameters. The statements

T = X;
X =Y
y = t;

in the body of swap () function, internally (as treated by the compiler) have the following meaning,
t = *x; // store the value pointed by x into t
*x = *y; // store the value pointed by y into location pointed by x
v = t; // store the value hold by 't' into location pointed by y

because, the formal parameters are of reference type and therefore, the compiler treats them similar to
pointers, but does not allow the modification of the address stored in them.

Void Argument List
A function prototype in C with an empty argument list, such as

extern void func ();
implies that the argument list of the declared function is not prototyped; the compiler will not be able to
warn against improper argument usage. To declare a function in C which has no arguments, the keyword
void is used, as indicated:

extern void func (void);

In C++, the above two declarations are equivalent. Because C++ maintains strict type checking, an
empty argument list is interpreted as the absence of any parameter.

2.11 Inline Functions

Function execution involves the overhead of jumping to and from the calling statement. Trading of this
overhead in execution time is considerably large whenever a function is small, and hence in such cases,
inline functions can be used. A function in C++ can be treated as a macro if the keyword inline
precedes its definition. The syntax of representing the inline function is shown in Figure 2.9.

Keyword, function qualifier

V

inline ReturnType FunctionName (Parameters)

{

// body of a main function
}

Figure 2.9: Syntax of inline function
Example: An inline function to find square of a number is as follows:

inline float square(float x)
{
X = X * x;
return{ x);
} i
The significant feature of inline functions is that there is no explicit function call; the function
body is substituted at the point of inline function call. Thereby, the runtime overhead for function

54 Mastering C++

linkage mechanism is reduced. The program square . cpp uses an irline function in the computation
of the square of a number.

// square.Cpp:. square of a number using inline function
#include <iostream.h>
inline float square(float x)
{
X =X * Xx;
return(.x); , . . N
) .
void main() i -
{
flcat num;
cout << "Enter a Number <float>: ";
cin >> num;
cout << "Its Square = " << square(num)};

}

Run

Enter a Number <float>: 5.5
Its Square = 30.25

In main (), the statement

cout << "Its Square = " << square(num);
invokes the inline function square (. .). It will be suitably replaced by the instruction(s) of the
square (. .) function body by the compiler. The execution time of the function square (. .) is less

than the time required to establish a linkage between the function caller (calling function) and the
callee (called function). This process involves the operation of saving the actual parameters and
function return address onto the stack, followed by a call to the function. On return, the stack must be
cleaned to restore the old status. This process is costlier in comparison to having square computation
instruction within a program itself instead of a function. Thus, support of inline functions allow to
enjoy the flexibility and benefits of modular programming, while at the same time delivering computa-
tional speedup of macros. Functions having small body do not increase the code size even though they
are physically substituted at the point of a call; there is no code for function linkage mechanism. Hence,
it is advisable to define functions having small function body as inline functions.

2.12 Function Overloading

A word is said to be overloaded when it has two or more distinct meanings. The intended meaning of
any particular use is determined by its context. In C++, two or more functions can be given the same
name provided each has a unique signature (in either the number or data type of their arguments).

In C++, it is possible to define several functions with the same name, but which perform different
actions. It helps in reducing the need for unusual function names, making code easier to read. The
functions must only differ in the argument list. For example

swap(int, int); // prototype
swap(float, float }); // prototype
From a user’s view point, there is only one function performing swapping of numbers.

Chapter 2: Moving from Cto C++ 55

Consider the C program show . ¢ having multiple show () functions for displaying input messages
to illustrate the importance of function overloading.

/* show.c: display different types of information with different functions */
#include <stdio.h>
void show_integer(int val)

{

printf ("Integer: %d\n", val);
} SRINIVAS COLLEGE oF
void show_double(double val) PG MANA EMENT STUBIES
{ !

printf ("Double: %1f\n", val); AGCNc“D
) CALL No.:

void show_string(char *val)

{
printf ("String: %s\n", val);

}

int main ()

{
show_integer(420);
show_double(3.1415);
show_string("Hello Worldin!");
return(0);

}

Run
Integer: 420
Double: 3.141500

String: Hello World
1

The above program has the following three different functions

void show_integer(int val);

void show_double(double val);

void show_string(char *val);
performing the same operations, but on different data types. Logically, all the three functions display
the value of the input parameters. It has unusual names such as show_integer, show_double,
etc., making the task of programming difficult and recalling function names although all of them perform
the same operation logically. In C++, this difficulty is circumvented by using the feature of the function
name overloading. All the functions performing the same operation must differ in input arguments data-
type or in the number of arguments. The program show. cpp equivalent of C’s show. c is written
using function overloading features.

// show.cpp: display different types of information with same function
#include <iostream.h>
void show(int val)
f
cout << "Integer: " << val << endl;

56 Mastering C++

void show(double val)
{
cout << "Double: " << val << endl;
}
void show(char *val)
{
cout << "String: " << val << endl;
}
int main ()ﬁ N

HE B PN . *sd

sho&(7&2b’fj " ' /7 calls show(int val);
show(3.1415); . /¥*calls show(double val)<
show("Hello World\n!"); // calls show(char *val);

el

returnt 0);

}

Run

Integer: 420
Double: 3.1415

String: Hello World
1

In the above program, three functions named show () are defined, which only differ in their argu-
ment lists: int, double, or char*. The functions have the same name. The definition of several
functions with the same name is called function overloading.

It is interesting to note the way in which the C++ compiler implements function overloading. Al-
though, the functions share the same name in the source text (as in the example above, show ()), the
compiler (and hence the linker) uses different names. The conversion of a name in the source file to an
internally used name is called name mangling. For instance, the C++ compiler might convert the name
void show(int) to the internal name VshowlI, while an analogous function with a char*
argument might be called VshowCP. The actual names which are used internally depend on the com-
piler and are not relevant to the programmer, except where these names shown in the example, a listing
of the contents of a function library.

A few remarks concerning function overloading are the following:

« The usage of more than one function with the same name, but quite different actions should be
avoided. In the above example, the functions show () are still somewhat related (they print informa-
tion on the screen). However, it is also quite possible to define two functions, say 1ookup (), one
of which would find a name in a list, while the other would determine the video mode. In this case, the
two functions have nothing in common except their name. It would therefore be more practical to use
names which suggest the action; say, findname () and getvidmode ().

o C++ does not allow overloaded functions to only differ in their return value. The reason is that
processing (testing) of a function return value is always left to the programmer. For instance, the
fragment

printf ("Hello World!\n");
holds no information concerning the return value of the functionprint £ () (The return value is, in
this case, an integer value that states the number of printed characters. This return value is practically

Chapter 2: Moving from C to C++ 57

never inspected.). Two functions print £ () which differ in their return type could therefore, not be
distinguished by the compiler.
« Function overloading can lead to surprises. For instance, imagine a usage of a statement such as
show(0); .

in the program show . cpp: it is difficult to predict which one of the above three show () functions
is invoked. The zero could be interpreted here as a NULL pointer to achar, i.e., a (char*) 0,orasan
integer with the value zero. C++ will invoke the function expecting an integer argument, which might
not be what one expects.

2.13 Default Arguments

In a C++ function call, when one or more arguments are omitted, the function may be defined to take
default values for cmitted arguments by providing the default values in the function prototype. These
arguments are supplied by the compiler when they are not specified by the programmer explicitly. The
program prnstr . cpp illustrates the passing of default arguments to function.

// prnstr.cpp: default arguments and message printing
#include <iostream.h>
void showstring(char *str = "Hello World!\n")

{
cout << str;
}
int main ()
{
showstring("Here is an explicit argument\n");
showstring () ; // in fact this says: showstring ("Hello World!\n");
return 0;

}

Run

Here is an explicit argument
Hello World!

In main (), when the compiler encounters the statement
showstring();
it is replaced by the statement
showstring("Hello World!\n");
internally. When the function parameter is missing, the compiler substitutes the default parameter in
that place.

The possibility of omitting arguments in situations where default arguments are defined is elegant;
the compiler will supply the missing arguments, when they are not specified. The code of the program
by no means becomes shorter or more efficient. Functions may be defined with more than one default
argument.

Default arguments must be known to the compiler prior to the invocation of a function with default
arguments. It reduces the burden of passing arguments explicitly at the point of a function call. The
program defargl.cpp illustrates the concept of default arguments.

58 Mastering C++

¢+ / defargl.cpp: Default arguments to functions
#include <iostream.h>

void PrintLine(char = '-', int = 70);

void main ()

{

PrintLine(); - // uses both default arguments
PrintLine('!' }; // assumes 2nd argument as default
PrintLine('*', 4C); // ignores default arguments
PrintLine('R', 55); // ignores default arguments

}
void PrintLine(char ch, int RepeatCount)
{
int i;
cout << endl;
for({ i = 0; i < RepeatCount; i++)
cout << ch;

************vi'***********************‘k***

RRR

The feature of default arguments can be utilized to enhance the functionality of the program, with-
out the need for modifying the old code referencing to functions. For instance, the function in the above
program

void PrintLine(char = '-', int = 70);
prints a line with default character ‘-’ in case it is not passed explicitly. This function can be enhanced
to print multiple number of lines, whose new prototype is

void PrintLine(char = '-', int = 70, int =1);
It may be noted that in the new function, the last parameter specifies the number of lines to be printed

- and by default, it is 1. Therefore, the old code referring to this function need not be modified and new

statements can be added without affecting the functionality. The program defarg2.cpp has ex-
tended the capability of defargl.cpp program.

/* defarg2.cpp: Default arguments to functions
Extending the functionality of defargl.cpp module */
#include <iostream.h>

void PrintLine{ char = '-', int = 70, int =1);

void main()

C
PrintLine(); // uses both default arguments
PrintLine('!"'); // assumes 2nd argument as default
PrintLine('*', 40); // ignores default arguments
PrintLine('R', 55); // ignores default arguments

// new code, Note: o0ld code listed above is unaffected
ErintLine('&', 25, 2);

Chapter 2: Moving from Cto C++ 59

void PrintLine(char ch, int RepeatCount, int nLines)

{
int i, 3;
for{ j = 0; j < nLines; Jj++)
{
cout << endl;
for(i = 0; i < RepeatCount:; i++)
cout << ch;
}
}
Run

lIlIIlIII|IIlllllllllill|IIIIIIIIIIIIIIIIIVIIIllllll|||||l||,|l|IIIIIII

**

RRR
B e 8 B B 6B B B 6o 8o B & 8 B e e be Ko b & bebebe &
o8B B B 6B b e S B e b B bbb Be S e e bebe &

The following statements in the above two programs

PrintLine () ; // uses both default arguments
PrintLine("!' }; // assumes 2nd argument as default
PrintLine('*', 40); // ignores default arguments
PrintLine('R', 55); // ignores default arguments

are the same. Although, the functionality of the function Pr intLine, is enhanced in defarg2.cpp
program, the old code referring to it remains unaffected in terms of its functionality; the compiler
supplies the last argumentas 1, thereby the new function does the same operation-as that of the old one.
Thus, default arguments feature can be potentially utilized in extending the fonction without modifying
the old code. Note that all arguments in a multiple argument function need not have default values.

2.14 Keyword typedef

The keyword typedef is allowed in C++, but no longer necessary, when it is used as a prefix in enum,
struct, or union declarations. This is illustrated in the following example:

struct somestruct
{
int a;
double 4;
char string [801];
}i
When a struct, enum, or any other compound type is defined, the tag of this type can be used as
type name (somestruct is the tag in the above example). For instance, the statement
somestruct what;
defines the structure variable what. In C, the same variable is defined as

struct somestruct what;

Thus, the use of keyword struct in the structure variable is default. In C++, the members of the

structure variables are accessed similar to C. The statement
what.d = 3.1415;

60 Mastering C++

assigns the numeric value 3.1415 to d, which is a member of the structure variable what. The
structure declaration and its use in the definition of variables is illustrated in the program date1 . cpp.

// datel.cpp: displaying birth date of the authors
#include <iostream.h>
struct date
{ //specifies a structure
int day;
int month;
int year;
};
void main()
{
date d1 = { 26, 3, 1958 };
date d2 = { 14, 4, 1971 };
date d3 = { 1, 9, 1973 };
cout << "Birth Date of the First Author: ";

cout << dl.day << "-" << dl.month << "-" << dl.year << endl;
cout << "Birth Date of the Second Author: ";
cout << d2.day << "-" << d2.month << "-" << d2.year << endl;
cout << "Birth Date of the Third Author: *;
cout << d3.day << "-" << d3.month << "-" << d3.year << endl;
}
Run

Birth Date of the First Author: 26-3-1958
Birth Date of the Second Author: 14-4-1971
Birth Date of the Third Author: 1-9-1973

2.15 Functions as aPartof astruct

Structures in C++ have undergone major revisions. Like C structures, C++ structures also provide a
mechanism to group together data of different types, into one unit belonging to the same family. In
addition to this, C++ allows to associate functions as a part of a structure. Thus, C++ structures provide
a true mechanism to handle data abstraction. This is the first concrete example of the definition of an
object, as described previously. An object is a structure containing all involved code and data. The
general syntax of the C++ structure is:

struct StructureName

{
public:
// data and functions
private:
// data and functions
protected:
// data and functions

}s

The structure has two types of members: data members and member functions. Functions defined
within a structure, operate on any member of the structure. The keywords public, private, and
protectedare called access specifiers. If none of these keywords appear in the structure declaration,

Chapter 2: Moving from Cto C++ 61

all the members of the structure have public access. The private and protected members of a structure
can be accessed only within the structure. Public members of a structure are accessible to both member
functions and its instances (structure variables). Internal functions of a structure are privileged code
and they can see all the features of a structure, but external code can see only the public features.

A definition of the structure point is given in the code fragment below. In this structure, two int
data fields and one function draw () are declared.
struct point
{
int x, Yi // coordinates
void draw {void); // drawing function

Yi

A similar structure could be a part of the painting program used to represent a pixel in the drawing.

The following are the points to be noted about structures:

« The function draw (), which occurs in the structure body is only a declaration. The actual code of
the function, or in other words, the actions to be performed by the function are located elsewhere in
the code section of the program. Member function can also be defined within the body of a structure.

« The size of the structure point is just two integers. Though a function is declared in the structure,
its size remains unaffected. The compiler implements this behavior by allowing the functiondraw ()
to be known only in the context of the point structure.

The point structure could be used as follows:

point a, b; // two points on the screen
a.x = 0; // define first dot

a.y = 10; // and draw it

a.draw ();

b = a; // copy a to b

b.y = 20; // redefine y-coordinate
b.draw (); // and draw it

The function draw (), which is a part of the structure, is selected in a manner similar to the selection of
data fields; i.e., using the field selector operator (.) with value structures or -> with pointers to
structures.

struct date

int day;

structure data

int month;
members

int year;

void show() ;

} structure member
function

Figure 2.10: Date structure having function show()

The idea behind this syntactical construction is that several structures may contain functions with
the same name. For instance, a structure representing a circle might contain three integer values; two

62 Mastering C++

values for the coordinates of the center of the circle and one value for the radius. Analogous to the
point structure, a draw () could be declared in the circle structure which would draw the circle.

The program date2 . cpp is C++ equivalent of the earlier program datel . cpp. It illustrates the
concept of associating functions operating on structure members as shown in Figure 2.10. The struc-
ture date has both the data members and functions operating on them. The user accesses the member
functions additionally, when compared to C's structure using the dot operator.

// date2.cpp: displaying birth date of the authors
#include <iostream.h>
struct date
{ //spec¢ifies a structure
int day:
int month;
int year;
void show()
{
cout << day << "-" << month << "-" << year << endl;
}
Y
void main()
(
date d1 = {- 26, 3, 1958 };
date d2 = { 14, 4, 1971 };
date d3 = { 1, 9, 1973 };
cout << "Birth Date of the First Author: ";
dl.show() ;
cout << "Birth Date of the Second Author: *;
d2.show();
cout << "Birth Date of the Third Author: ";
d3.show() ;

}

Run

Birth Date of the First Author: 26-3-1958
Birth Date of the Second Author: 14-4-1971
Birth Date of the Third Author: 1-9-1973

In main (), the statements

dl.show() ;
d2.show!() ;
d3.show() ;

invoke the function show () defined in the structure date.

2.16 Type Conversion

The basic data types can be used with great flexibility in assignments and expressions, due to the
implicit type conversion facility provided, whereas with the user-defined data types, the same can be

Chapter 2: Moving from Cto C++ - 63

achieved through explicit type conversion (the type cast operator). The syntax of type conversion
specification in C and C++ is shown in Figure 2.11.

data type is enclosed variable name is enclosed
between parentheses between parentheses
(DataType) Variable DataType {(Variable)
Ex: (int)age, (float)weight Ex: int (age), float(weight)
(a) Type casting in C (b) Type casting in C++

Figure 2.11: Syntax of data type casting in C and C++

Consider the following statements

float weight;

int age;

weight = age;
where weight is of type f1oat and age is of type int. Here, the compiler calls a special routine to
convert the contents of age, which is represented in an integer format, to a floating-point format, so
that it can be assigned to weight. The compiler has built-in routines for conversion of basic data
types such as char to integer, float to double, etc. The feature of the compiler that performs data
conversion without the user intervention, is known as implicit type conversion.

The compiler can be instructed explicitly to perform type conversion using the type conversion

operators known as type cast operator. For instance, to convert int to float, the statement is
weight = (float) age;

where the keyword f1oat is enclosed between braces. Here, float enclosed between braces is the

type casting operator. In C++, the above statement can also be expressed in a more readable form as
weight = float(age);

The explicit conversion of £1oat to int uses the same built-in routine as implicit conversions. The

program cast . cpp illustrates the explicit type casting in C++.

// cast.cpp: new style of typecasting in C++
include <iostream.h>
void main()

{

int a;

float b = 420.5;

cout << "int(10.4) = " << int(10.4) << endl;
cout << "int(10.99) = " << int(10.99) << endl;
cout << "b = " << b << endl;

a = int(b);

cout << "a = int(b) = " << a << endl;

b = float(a) + 1.5;

cout << "b = float(a)+1l.5 = " << b;

64 Mastering C++

Run

int (10.4) = 10
int(10.99) = 10

b = 420.5

a int(b) = 420

b float(a)+1.5 = 421.5

2.17 Function Templates

Templates provide a mechanism for creating a singie function possessing the capability of several
functions, which differ only in their parameters and local variables data type. Such a function is called
function template. It permits writing one source declaration that can produce mul.tiple functions differ-
ing only in their data types. The general format of a template function is depicted in Figure 2.12. A
function generated from a function template is known as template function, which is created by the
compiler internally and is transparent to the user.

Keyword for declaring function template

name of the template data-type

Function parameters of type
l template, primitive or user-defined

——
template < class Tl1l, class T2, ..> ————
ReturnType FunctionName (Arguments of type T1 and T2, ...)

{
// local variables of type T1, T2, or any other
// function body, operating on variables of type T1, T2
// and other variables

Figure 2.12: Syntax of function template

The syntax of template function is similar to a normal function, except that it uses variables whose
data types are not known until they are invoked. Such unknown data types {generic data types) are
resolved by the compiler and are expanded to the respective data types (depending on the data type of
actual parameters in a function call statement). A call to a template function is similar to that of a normal
function. It can be called with arguments of any data-type. The complier will create functions internally
without the user intervention, depending on the data types of the input parameters. The function
template for finding the maximum of two numbers is shown below:

template <class T>
T max(T-a, Tb)
{
if(a >b)
return a;
else
return b;

}

The program mswap . cpp illustrates the need for function templates. It defines multiple swap
functions for swapping the values of different data types.

Chapter 2: Moving from C to C++

// mswap.cpp: Multiple swap functions

#include <iostream.h>

void swap(char & x, char & y) // pass by reference
{

char t; // temporary used in swapping

T = X;
X =Y
Yy = t;

}
void swap(int & x, int & y) // pass by reference
{

int t; // temporary used in swapping
‘t = X;
X =Y
y = t;

}
void swap(float & x, float & y) // pass by reference
{

float t; // temporary used in swapping

£t = X;
X =Y
y = t;

}

void main{)

{
char chl, ch2;
cout << "Enter two Characters <chl, ch2>: *;
cin >> chl >> ch2;

swap{ chl, ch2); // compiler calls swap(char &a, char &b);
cout << "On swapping <chl, ch2>: " << chl << " " << ch2 << endl;
int a, b;

cout << "Enter two integers <a, b>: ";
cin >> a >> b;

swap(a, b); // compiler calls swap(int &a, int &b);
cout << "On swapping <a, b>: " << a << " " << b << endl;
float c, d;

cout << "Enter two floats <c, d>: *;
cin >> ¢ >> d;
swap(¢, @); // compiler calls swap(float &a, float &b);

cout << "On swapping <c, d>: " << c << " " << d;
}
Run

Enter two Characters <chl, ch2>: R K
On swapping <chl, ch2>: KR

Enter two integers <a, b>: 5 10

on swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5
On swapping <c, d>: 99.5 20.5

The above program has three swap functions
void swap(char & x, char &y);

65

66 Mastering C++

void swap(int & x, int & y);
void swap(float & x, float & y);

whose logic for swapping is same. Such functions can be defined as template functions without rede-
fining it for every data type. The program gswap.cpp makes all those functions as templates and
avoids the overhead of writing the same pattern of code again and again, operating on different data
types.

// gswap.cpp: generic function for swapping
#include <iostream.h>

template <class T>

void swap(T & x, T & y) // by reference

{

T t; // temporary used in swapping, template variable
t =
X

Y

}
void main()
{
char chl, ch2;
cout << "Enter two Characters <chl, ch2>: ";
cin >> chl >> ch2;
swap(chl, ch2);//compiler creates and calls swap(char &a, char &b);
cout << "On swapping <chl, ch2>: " << chl << " " << ch2 << endl;
int a, b;
cout << "Enter two integers <a, b>: ";
cin >> a >> b;

swap(a, b); // compiler creates and calls swap(int &x, int &y);
cout << "On swapping <a, b>: " << a << " * << b << endl;
float c, 4;

cout << "Enter two floats <c, d>: *;

cin >> ¢ >> d;

swap(¢, d); // compiler creates and calls swap(float &x, float &y);
cout << "On swapping <c, d>: " << ¢ << " * << d;

}

Run

Enter two Characters <chl, ch2>: R K
On swapping <chl, ch2>: K R

Enter two integers <a, b>: 5 10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5
On swapping <c¢, d>: 99.5 20.5

In main (), when the compiler encounters the statement
swap (chl, ch2);
calling the swap template function with char type variables, it creates an internal function of type
swap (char &a, char &b);

The compiler automatically identifies the data type of the arguments passed to the template function,
creates a new function, and makes an appropriate call. The process of compiling a template function is

Chapter 2: Moving from C to C++ 67

totally invisible to the user. Similarly, the compiler translates the following calls

swap(a, b); // compiler creates swap(int &x, int &y);
swap(¢, d); // compiler creates swap(float &x, float &y);

into appropriate functions (if necessary), and calls them based on their input parameter data types.

Template Function Overloading

A template function can be overloaded in two ways - (i) by other functions of its name or (ii) by other

template functions of the same name. Overloading resolution for functions and template functions can

be done in the following three steps:

+ If an exact match for the function is found, call it.

« If a function can be generated from a function template matching exactly, then call the generated
function.

« If a function can be found by trying ordinary overloading resolution techniqres then call it;

« If no match is found, report an error.

2.18 Runtime Memory Management

Whenever an array is defined, a specified amount of memory is set aside at compile time, which may not
be utilized fully or may not be sufficient. If a situation arises in which the amount of memory required is
unknown at compile time, the memory allocation can be performed during execution. Such a technique
of allocating memory during runtime on demand is known as dynamic memory allocation.

C-++ provides the following two special operators to perform memory management dynamically.

«+ new operator for dynamic memory allocation
+ delete operator for dynamic memory deallocation

The memory management functions such as malloc (), calloc(), and free() in C, have
been improved and evolved in C++ as the new and delete operators to accomplish dynamic memory
allocation and deallocation respectively.

new Operator

The new operator offers dynamic storage allocation similar to the standard library functionmalloc. It
is particularly designed keeping OOP in mind and throws an exception if memory allocation fails. The
general format of the new operator is shown in Figure 2.13.

return type, pointer to data type

new operator _, dA@LPE e of items
r to be allocated; optional

— e ————
DataType * new DataTypel[size in integer);

(a) Memory allocation in C++

void *malloc (sizeof (DataType) *Size in Integer);
(b) Memory allocation in C

Figure 2.13: Syntax of memory allocation in C and C++

68 Mastering C++

The C++ statement
PtrVar = new DataType[IntegerSize];
is equivalent to C’s ‘
PtrVar = (DataType *) malloc(sizeof(DataType) * IntegerSize);
The operator new allocates a specified amount of memory during runtime and returns a pointer to
that memory location. It computes the size of the memory to be allocated by
sizeof (DataType) * IntegerSize
where DataType can be a standard data type or a user defined data type. IntegerSize can be an
integer expression, which specifies the number of elements in the array. The new operator returns
NULL, if memory allocation is unsuccessful.

The following examples illustrate the allocation of memory to various data types.
1. int *a;
a = new int[100 };
is equivalent to C's .
a = (int *) malloc(sizeof(int) * 100);
It creates a memory space for an array of 100 integers. a [0] will refer to the first element,a[1] to the
second element, and so on

2. float *b;
b = new float(size]; // size is integer variable

is equivalent to
b = (float *) malloc(sizeof(float) * size);

3. double *d;
d = new double[size]; // size is integer variable

is equivalent to

d = (double *) malloc(sizeof(double) * size);
<. char *city;

city = new char[city_name_size]; // city_name_size is int variable
is equivalent to

city = (char *) malloc(sizeof(char) * city_name_size);

5. struct date
{ //specifies a structure
int day:;
int month;
int year;
}i

date *date_ptr;
The statement
date_ptr = new date;
is equivalent to
date_ptr = (struct date *) malloc(sizeof (date));
The new operator allows the initialization of memory locations during allocation as follows:
PtrVar = new DataType(init_value);

Chapter 2: Moving from C to C++ 69

where init_value specifies the value to be initialized to a dynamically created element. Note that.
DataType is optional. It is illustrated by the following examples:

int *a = new(100 };

float *rate = new(5.5);
The first statement creates a memory for an integer and initializes it with100 and the second statement
creates a memory location for float and initializes it with 5. 5.

delete Operator

The new operator’s counterpart, delete, ensures the safe and efficient use of memory. This operator
is sed to return the memory allocated by the new operator back to the memory pool. Memory thus
released, will be reused by other parts of the program. Although, the memory allocated is returned
automatically to the system, when the program terminates, it is safer to use this operator explicitly within
the pointer. This is absolutely necessary in situations where local variables pointing to the memory get
destroyed when the function terminates, leaving memory inaccessible to the rest of the program. The
syntax of the delete operator is shown in Figure 2.14.

pointer returned through
delete operator new operator

Va

delete PointerVariable;

(a) Memory deallocation in C++

free (PointerVariable);
(b) Memory deallocation in C

Figure 2.14: Syntax of memory deallocation in Cand C++

The C++ statement
delete Ptrvar;
is equivalent to C’s
free(PtrVar);
where PtrVar holds the pointer returned by the memory allocation functions such as new operator
and malloc () function. The memory allocated using the new operator or malloc () function
should be released by the delete operator and free () function respectively.

It should be noted that, by deallocating the memory, the pointer variable does not get deleted and
the address value stored in it does not change. However, this address becomes invalid, as the returned
memory-will be used up for storing entirely different data.

The following examples illustrate the use of the delete operator in releasing memory allocated in
the earlier memory allocation examples.
1. delete a;

is equivalent to C's
free((int *) a);

70 Mastering C++

2. delete b;
is equivalent to

free((float *) b);
3. delete d;

is equivalent to
free((double *) d);

4. delete city;
is equivalent to
free((char *) city);

5. delete date_ptr;

is equivalent to
free((struct date *) date_ptr);

The program vector . cpp illustrates the concept of dynamic allocation and deallocation using
new and delete operators.

// vector.cpp: addition of two vectors
#include <iostream.h>
void AddVectors(int *a, int *b, int *c, int size)
{
for(int # = 0; i < size; i++)
cli} = ali] + b[i];
}
void ReadVector(int *vector, int size)
{
for(int i = 0; i < size; i++)
cin >> vector(i];
} .
void ShowVector(int *vector, int size)
{
for(int i = 0; i < size; i++)
cout << vector[i] << " ";
}
void main()
{
int vec_size;
int *x, *y, *z;
cout << “"Enter Size of Vector: “;
cin >> vec_size;
// allocate memory for all the three vectors

x = new int[vec_size]; // x becomes array of size vec_size
y = new int[vec_size]; // y becomes array of size vec_size
z = new int[vec_size]; // 2z becomes array of size vec_size

cout << "Enter elements of vector x: *;
ReadVector(x, vec_size);

cout << "Enter elements of vector y: *;
ReadVector(y, vec_size);

Addvectors(x, y, 2z, vec_size); // z = xX+y

Chapter 2: Moving from Cto C++ 7

cout << "Summation Vector z = X + y: ";
ShowVector (z, vec_size);
// free memory allocated to all the three vectors

delete x; // memory allocated to x is released
delete y; // memory allocated to y is released
delete z; // memory allocated to z is released
}
Run
Enter Size of Vector: 3
Enter elements of vector x: 1 2 3 45
Enter elements of vector y: 2 3104
Summation Vector z = x + y: 3 54 49
In main (), the following statements
x = new int[vec_size]; // x becomes array of size vec_size
y = new int{ vec_size]; // y becomes array of size vec_size
2z = new int[vec_size }; // z becomes array of size vec_size

allocate memory of size vec_size (integer value read previously) to the integer pointer variablesx, y,
and z respectively. It is equivalent to defining an array of size vec_size statically but the size of the
array must be known at compile time. This inflexibility of array definition is circumvented by using
dynamic allocation known as programmer-controlled memory management. The following statements

delete x; // memory allocated to x is released
delete y: // memory allocated to y is released
delete z; // memory allocated to z is released

release the memory of size vec_size (integer value read previously) allocated to the integer pointer
variables x, y, and z respectively. An array defined statically is released automatically by the system
whenever the array goes out of scope. But dynamically allocated arrays must be explicitly released by
the delete operator.

Comments

Most of the concepts introduced in this chapter serve as a quick introduction to enhancements made to
C++ language apart from another notable enhancement that is object-oriented programming support.
All the material covered in this chapter are discussed in detail in later relevant chapters. This chapter is
mainly aimed at those who are familiar with C and want a quick introduction to C++ language. It allows
them to extrapolate from the material in this chapter and similarly from the next chapter (C++ ata
Glance) to their own programming needs. Beginners should supplement it by writing small; similar
programs of their own. Both groups can use this and the next chapter as a frame to hang on to the more
detailed descriptions that begin in Chapter 4.

Review Questions

2.1 What are the enhancements added to C++ apart from the object-oriented features ?

2.2 Compare the traditional beginner's Hello World program written in C and C++.

2.3 List the compilers supporting C++. Explain their compilation features.

2.4 InC/C++, why is themain () function popularly called as the driver function ?

2.5 Enumerate the important features of stream-based VO and provide a comparative analysis with its

72 Mastering C++

C counterpart statements such as scanf () and print£ ().

2.6 Write an interactive program for computing the roots of a quadratic equation by handling all
possible cases. Use streams to perform I/O operations:.

2.7 What are the benefits of commenting a program ? Develop a program to illustrate how comment-
ing helps in writing a program, which can be understood by others easily ?

2.8 Why are variables defined with const called as read-only variables ? What are its benefits when
compared to macros ?

2.9 Justify the need of the scope resolution operator for accessing global variables.

2.10 What are the benefits of defining variables at the point of use ? In thefollowing statement:

for(int i = 0; 1 < 10; i++)
XXX ;

is the variable i visible after the termination of loop ?

2.11 What are the differences between reference variables and normal variables ? Why cannot a
constant value be initialized to variables of reference type ?

2.12 What are the benefits of strict type checking ? Explain with suitable examples.
2.13 What are the different types of parameter passing methods supported in C++ ? Provide a com-
parative analysis between pass-by-pointer and pass-by-reference methods.

2.14 What is the difference between inline functions and normal functions ? Write an interactive
program with an inline function for finding the maximum value of two numbers.

2.15 What is function overloading ? Explain how it helps in writing well thought-out programs.

2.16 What is name mangling and explain its need ? Is this transparent to the user ?

2.17 Write an interactive program for swapping integer, real, and character type variables without
using function overloading. Write the same program by using function overloading features and
compare the same with its C counterpart.

2.18 Explain the need of default arguments. Write an interactive program for drawing chart of marks
scored by a student in different subjects. A default arguments function has to support statements
such as:

DrawChart(50);
DrawChart(60,” '*');
DrawChart(34, '?');
By default, DrawChart () draws chart by using star symbols.

2.19 What are the improvements made to the struct construct in C++ ? What are the benefits of
having functions as a part of the structure declaration. Write an interactive program for process-
ing a student record using structures. All functions manipulating structure variable members
must be members of that structure.

2.20 Explain the need for type conversion with suitable examples.

2.21 What are function templates ? What are the differences between function template and template
function? Write a program to sort numbers using function templates.

2.22 Explain the constructs supported by C++ for runtime memory management. Write an interactive
program processing student's results using C++'s memory management operators.

2.23 Write a program for creating variables of the date structure dynamically. Can a pointer variable
be used to store data in a memory location pointed to by them, with the binding pointer to a
specific location. ‘

3

C++ at a Glance

3.1 Introduction

The C++ language evolved as a result of extensions and enhancements to C. It has efficient memory
management techniques, provisions for building new concepts, and a new style of program analysis
and design. The reason for retaining C as a subset is its popularity among programmers, and moreover,
millions of lines of code already written in C can be directly moved to C++ without rewriting. The other
advantages are: the syntax and structure of many statements of C closely resemble the actual operation
on the computer’s internal registers and allow to produce fast executable code.

The most interesting features of C++ are those which support a new style of programming known as
object-oriented programming. It emphasizes on data decomposition rather than algorithm decomposi-
tion. OOP is generally useful for any kind of application, but it is particularly suited for interactive
computer graphics, simulations, databases, artificial intelligence, high-performance computing, and
system programming applications. This chapter presents the first impression of C++ with its features of
object-oriented programming.

C++ as an object oriented programming language supports modular programming and enables easy
maintainability. The most prominent features of C++ that provide a foundation for data abstraction and
object-oriented programming are the following:

« Data Encapsulation and Abstraction: Classes
« Inheritance: Derived Class

« Polymorphism: Operator Overloading

« Friend Functions

+ Polymorphism: Virtual Functions

« Generic Classes: Class Templates

« Exception Handling

« Streams Computation

3.2 Data Encapsulation and Abstraction—Classes

Data abstraction is the ability to create user-defined data types for modeling real world objects using
built-in data types and a set of permitted operators. Encapsulation is achieved by using the class,
which combines data and functions that operate on the data. Data hiding is achieved by restricting the
members of classes as private or protected.

The object oriented programming technique involves the representation of real world problems in
terms of objects. C++ provides a new data structure called class whose instance is called object. A class
consists of procedures or methods and data variables.

Class is the basic construct for creating user-defined data types called abstract data types; in a way

74 Mastering C++

it supports encapsulation. Encapsulation allows to combine data and functions that operates on them
into a single unit. One or more classes grouped together constitute a program. The program
counterl.cpp illustrates various concepts such as classes and objects, encapsulation, and decla-
ration of abstract data types. The program creates a class with one data member and instantiates two
objects to demonstrate the features of classes. It simulates the behavior of an upward counter.

// counteri.cpp: counter class having upward counting capability
#include <iostream.h>
class counter

{
private:
int value; // counter value
public:
counter () // No argument constructor
{
value = 0; // initialize counter value to zero
}
counter(int val) // Constructor with one argument
{
value = val; // initialize counter value
}
~counter () // destructor
{
cout << "object destroyed" << endl;
}
int GetCounter () // counter Access
{
return value;
}
void up() // increment counter
{
value = value + 1;
}
Yi
void main()
{
counter counterl; // calls no argument constructor
counter counter2 = 1; // calls one argument constructor
cout << "counterl = " << counterl.GetCounter() << endl;
cout << "counter2 = * << counter2.GetCounter() << endl;
// update counters, ‘increment
counterl.up();
counter2 . up();
cout << *counterl = * << counterl.GetCounter() << endl;
cout << "counter2 = " << counter2.GetCounter() << endl;
}
Run
counterl = 0
counter2 = 1
counterl =1

Chapter 3: C++ at a Glance 75

counter2 = 2
object destroyed
object destroyed

The following section describes the various parts of the program:

« Class, encloses the data and functions into a single unit. The name of the class is counter. The
class counter can be used as the user-defined data type for defining its variables called objects.

« Data Members, describe the data in the abstract data types. The data member in the class counter
is value. A class can have any number of data members.

. Member Functions, define the permissible operations of the data type (member variables). The
class counter has the following member functions:

1. counter () : constructor with no argument
2. counter (int val) : constructor with one argument
3, ~counter () : destructor

4. GetCounter () : counter value access interface
S.up() : increment counter

« Constructor, is a member function having the same name as that of its class and is executed auto-
matically when the class is instantiated (object is created). It is used generally to initialize object data
members and allocate the necessary resources to them. The class counter has two constructors to
initialize the data members of the class.

counter ()

counter (int)

Similar to normal functions, member functions of a class including constructors (but not destructor)
differ in their specifications (data types of argument or number of arguments); this feature is called
function overloading. The compiler will identify a suitable constructor, whose formal parameters matches
with those actual parameters passed to it at the time of creation of objects.

« Destructor, is a member function having the character ~ (tilde) followed by a function name, which
is same as the class name (i.e., ~classname ()) and is invoked automatically when class's object
goes out of scope (i.e., the object is no longer needed). It is generally used to reclaim all the resources
allocated to the object. The above program has the destructor named ~counter () in the class
counter. It is automatically invoked whenever objects go out of scope (when program terminates in
the above case). A class can have at the most one destructor.

«+ Access Specifiers, control the visibility status of the members of a class. Access specifiers in the
above program are the keywords private and public. The members of the class counter de-
clared following the keyword private are accessible to only members of its own class. Thus, hiding
the data inside a class, so that it is not accessed mistakenly by any function outside the class. Whereas,
the members of the class counter declared following the keyword public are accessible from
objects of the class in addition to their own class members.

In the above program, the data member value is declared asprivate and member functions are
declared as public. By default, these ure private. The explicit declaration public means that
these functions can be accessed from outside the class.

«+ Object, is an instance of a class. The objects created in the program are counterl and counter2
which are the instances of the class counter. The first object's data membervalue is initialized using
zero-argument constructor, whereas the second object is initialized using one-argument constructor.

76 Mastering C++

The pictorial representation of the class counter and invocation of its members by various
statements in main () is shown in the Figure 3.1a.

Instances of the class counter

Client program

K-—__/

counter counterl;

constructor
counter () ;

val) i

private member

- R .
variables ‘%E counter counter2=1;
[)
§3 counterl.up()
int value; % counter2.up();
8]

cout <<
counterl.GetCounter () ;

/\)

(a) Counter object and member access

counter counterl; counter counter2;

int value; int value; int value; int value;

Lo 1|7 L] NN g N P

counterl.up();

counter2.up();
(b) Counter objects status

Figure 3.1: Counter class and objects

In main (), the statements

counter counterl;

// calls no argument constructor
¢ounter counter2 = 1;

// calls 1 argument censtructor

create two objects called counterl and counter2 of the class counter. The first statement
invokes no-argument constructor, counter () automatically, which initializes its data member value
to zero, whereas the second statement invokes a single argument constructor, counter (int) auto-

matically and initializes its data member value to 1 (as mentioned in the statement). The statements
counterl.up();
counter2.up();

invoke member function up () defined in the class counter and increment the data member value
by one. Thus, the two objects counterl and counter2 of the class counter have different data
values as shown in Figure 3.1b. Each object of the counter class is stored in a separate area in memory.

Chapter 3: C++ at a Glance 77

Classes are syntactically, an extension of structures. The difference is that, all the members of
structures are public by defauit, whereas members of classes are private by default. Class follows the
principle of all the information about a module should be private to the module unless it is specifically
declared public.

Member Functions

The data members of a class must be declared within the body of a class, whereas the member functions
of a class can be defined in one of the following ways:

+ Inside the class body
« .Outside the class body

The syntax of a member function definition changes depending on whether it is defined inside or
outside the class specification. However, irrespective of the location of its definition (inside or outside
the class body), the member function must perform the same operation. Therefore, the code inside the
function body would be identical in both the cases. The compiler treats member functions defined
inside a class as inline functions, whereas those defined outside a class are not treated as inline
functions. The program stdclass.cpp illustrates the mechanism of defining member functions
outside the body of the class.

// stdclass.cpp: member functions defined outside a body of the class
#include <iostream.h>

#include <string.h>

class student

{

private:

int roll_no; // roll number

char name[20 }; // name of a student
public:

void setdata(int roll_no_in, char *name_in) ;
void outdatal():
}i
// initializing data members
void student::setdata(int roll _no_in, char *name_in)
{
roll_no = roll no_in;
strcpy (name, name_in);
}
// display data members on the console screen
void student: :outdatal() '

4

A%
cout << "Roll No = " << roll_no << endl;
cout << "Name = " << name << endl;

3

s
void main()
{

student sl; // first object/variable of class student
student s2; // second object/variable of class student
sl.setdata(1, "Tejaswi"); // object sl calls member function setdata

s2.setdata(10, "Rajkumar"); // calls member function setdata

78 Mastering C++

cout << "Student details..." << endl;
sl.outdata(); // object sl calls member function outdata’
s2.outdata() ; // object s2 calls member function outdata
)
Run

Student details. ..
Roll No =1

Name = Tejaswi
Roll No = 10

Name = Rajkumar

In the class student, the prototype of member functions setdata and outdata are declared
within the body of the class and they are defined outside the body of the class. In the declarator
void student: :outdataf()
student : : indicates that the function outdata (), belongs to the class student and it is a
member function of the class student.

3.3 Inheritance—Derived Classes

Inheritance is a technique of organizing information in the hierarchical form. It is similar to a child
inheriting the features such as beauty of the mother and intelligence of the father. It is an important
feature of object oriented programming that allows to extend and reuse existing code without requiring
to rewrite it from scratch. Inheritance involves derivation of new classes from the existing ones, thus
enabling the creation of a hierarchy of classes, similar to the concepts of class and subclass in the real
world. A new class created using an existing class is called the derived class. This process is called
inheritance. The derived class inherits the members - both data and functions of the base class. It can
also modify or add to the members of a base class. Inheritance allows a hierarchy of classes to be
derived.

Derived classes, inherit data members and member functions from their base classes, and can be
enhanced by adding other data members and member functions.

Recall that the program counterl.cpp discussed above, uses the class counter as a general
purpose counter variable. A counter could be incremented or decremented. The counter class can be
extended to support downward counting. It can be achieved by either modifying the counter class or
by deriving a new class called NewCounter from the counter class. The program counter2.cpp
is an extended version of the previous program and has two classes, one, counter as a base class and
two, NewCounter as a derived class. The private members of a base class cannot be inherited.

C++ supports another access specifier called protected. Its access privileges are similar to
private except that they are accessible to its derived classes. Protected access privilege is used
when members in base class’s section are to be treated as private and they must be inheritable by a
derived class. The publié members of the base class are accessible to the derived class, but the private
members of the base cldss are not. However, the protected members of the base class are accessible to
the derived class, but they are private to all other classes.

Chapter 3: C++ at a Glance

// counter2.cpp: new counter having upward and downward counting capability
#include <iostream.h>
class counter

{
protected: // Note: it is private in COUNTERI1.CPP
int value; // counter value
public:
counter () // No argument .constructor
{
value = 0; // initialize counter value to zero
) ‘
counter (int val) // Constructor with one argument
{
value = val; // initialize counter value
}
int GetCounter () // counter Access
{
return value;
}
void up () // increment counter
{
value = value + 1;
}
}:

// NewCounter is derived from the old class counter publically
class NewCounter: public counter

{

public:
NewCounter () : counter ()
{}
NewCounter{ int val)} : counter(val’)
1
void down () // decrement counter
{
value = value - 1; // decrement counter
}
}:
void main()
{
NewCounter counterl; // calls no argument constructor
NewCounter counter2 = 1; // calls 1 argument constructor

cout << "counterl initially = * << counterl.GetCounter() << endl;
cout << "counter? initially = " << counter2.GetCounter() << endl;

// increment counter

counterl.up();

counter2.up();

cout << "counterl on increment = " << counterl.GetCounter () << endl;
cout << "counter2 on increment = " << counter2.GetCounter() << endl;
// decrement counter

counterl.down () ;

79

80 Mastering C++

counter2.down () ;

cout << "counterl on decrement = " << counterl.GetCounter () << endl;
cout << "counter?2 on decrement = " << counter2.GetCounter () ;

}

Run

counterl initially = 0
counter2 initially =1
counterl on increment
counter2 on increment
counterl on decrement
counter2 on decrement

"

1l
P o N R

In the above program, the NewCounter class has its own features to perform counter decrement
by using the member functions of the counter. The statement
class NewCounter: public counter

derives a new class NewCounter known as derived class from the base class counter. The base
class counter is publicly inherited by the derived class NewCounter. Hence, the members of
counter class that are protected become protected and public become public in the
derived class NewCounter. The NewCounter class can treat all the members of the counter
class, as though they belong to it.

When an object of the derived class is created, one of the constructors of the base class must be
executed before a constructor of the derived class is exccuted. In the case of destructors, the body of
the derived class destructor is executed first followed by that of the base class. The specification of the
constructors in the following statements

NewCounter () : counter ()

NewCounter{ int val) : counter(val)
indicate as to which one of the constructors in the base class has to be selected while creating objects
of the derived class. If no explicit specification of the base class constructor is made in the derived class
constructor, the compiler will select the no-argument constructor of the base class by default as indi-
cated in Figure 3.2.

In main(), the statements
NewCounter counterl; // calls no argument constructor
NewCounter counter2 = 1; // calls 1 argument constructor
create two objects called counterl and counter2 of the NewCounter class. The first statement
invokes the no-argument (default) constructor NewCounter () automatically, which in turn calls the
base class constructor counter () to initialize the data member value to zero. Whereas, the second
statement invokes the one-argument constructor NewCounter (int) automatically, which in turn
calls the base class constructor counter (int) to initialize the data member value to 1 (as men-
tioned in the statement). Derived class can also initialize its own data members or base class data
members explicitly.

The statements

counterl.up{();
counter2.up();

call member function up () of the base class to increment the counter value by ene. Whereas the
siatements

Chapter 3: C++ at a Glance 81

counterl.down () ;

counter2.down () ;
call member function down () of the derived class to decrement the counter value by one. C++ sup-
ports derivation of a class from more than one base class, which is called multiple inheritance. Some of
the other forms of inheritance supported by C++ are hierarchical, multilevel, hybrid, and multipath.

constructor
counter () ;

private
members

constructor

counter (int val):;

int value;

Client program

T~

|_ NewCounter counterl;

//NewCounter counter2=1;

\{ counterl.up();

counter2.up();
counterl.down():
counter2.down () ;

constructor
NewCounter ()}

cout <<
counterl.GetCounter () ;

Ny

Instances of the class NewCounter

Figure 3.2: NewCounter class and inheritance

34 Polymorphism-OperatorOverloading

Polymorphism allows a single name/operator to be associated with different operations depending on
the type of data passed. In C++, itis realized by using function overloading, operator overloading, and
dynamic binding. The operators such as + -, * / etc., dealing with basic data types can'be extended to
work on user-defined data types by using the facility of operator overloading. Overloaded operators
work with user-defined or basic-data types depending upon the type of operands. Operator overload-
ing allows the user to give additional meaning to most operators so that it can be used with the user’s
own data types, thereby making the data-types easier to use.

82 Mastering C++

Operator overloading, similar to function name overloading, helps to reduce the need for unusual
function names, making code easier to understand. It also supports programmer-controlled automatic
type conversion, which blend user defined data types, appear and work in the same way as fundamental
data types provided by the C++ language.

Operator overloading extends the semantics of an operator without changing their syntax. The
grammatical rules defined by-the C++ that govern its use such as the number of operands, precedence,
and associativity of the operator remains the same for overloaded operators. Therefore, it should be
remembered that overloading of an operator does not change its original meaning. C++ allows overload-
ing of both unary and binary operators.

In the program counterl.c¢pp and counter2.cpp, the functions up () and down () are
invoked explicitly to update the counters. Instead of using such functions, the operators like ++ (incre-
ment operator) can be used to perform the same job, while increasing the program readability without
the loss of functionality. The enhanced version of the class counter declared in the program
counter2.cpp is rewritten to use overloaded increment operator in the program counter3.cpp.
It overloads increment and decrement operators to operate on user defined data items.

// counter3.cpp: increment and decrement operation by operator overloading
#include <iostream.h>
class counter

{

private:
int value; // counter value
public:
~ counter () // No argument constructor
¢
value = 0; // initialize counter value to zero
}
counter(int val) // Constructor with one argument
{
value = val; // initialize counter value
}
int GetCounter () // counter Access

{

return value;
}
// overloading increment operator
void operator++ () // increment counter
{
value = value + 1;
}
void operator --{() // decrement counter

{

value = value - 1; // decrement counter

Yi
void main{()

{

counter counterl; // calls no argument constructor

Chapter 3: C++ at a Glance 83

counter counter2 = 1; // calls 1 argument constructor

cout << "counterl initially " << counterl.GetCounter () << endl;
cout << "counter2 initially " << counter2.GetCounter () << endl;
// increment counter

++counterl;

counter2++;

cout << "counterl on increment
cout << "counter2 on increment
// decrement counter
--counterl;

counter2--;

cout << “"counterl on decrement
cout << "counter2 on decrement

<< counterl.GetCounter () << endl;
v << counter2.GetCounterf) << endl;

1l

" << counterl.GetCounter () << endl;
" << counter2.GetCounter () ;

}

Run
counterl initially = 0
counter? initially =1

counterl on increment
counter?2 on increment
counterl on decrement =
counter?2 on decrement

1
R O NP

The word operator is a keyword. It is preceded by the return type void. The operator to be
overloaded is immediately written after the keyword operator, followed by the void function sym-
bol as operator++ (). This declarator syntax informs the compiler to call this member function
whenever the ++ operator is encountered. provided its operand is of type counter.

The statement in the class counter
void operator ++() // increment counter
overloads the increment operator (++) tc operate on the user defined data type. When the compiler
encounters statements such as

++counterl;
counter2++;

it calls the overloaded operator function defined in the user-defined class (see Figure 3.3). The state-
ment in the class counter

void operator--() // decrement counter
overloads the decrement operator (--) to operate on objects of the user defined data type. When the
compiler encounters statements such as

--counterl;
counter2--;

it calls the overloaded operator function defined in the user-defined class. It can be observed that the
function body of an overloaded and a non-overloaded operator function is same; the only change isin
the function prototype and method of calling. For instance, the statement in counter2.cpp
counter2.up () ;
can be replaced by a more readable equivalent statement:
counter2++;

in the above program.

84 Mastering C++

Instances of the class counter

constructor

counter () ; €= Client program

/‘\/

ounter counterl;

private members —counter counter2=1;

{ ++ counterl;

. counter2++;
int value; un !

{ -—- counterl;
counter2- -;

cout <<
counterl.GetCounter () ;

/\J

Figure 3.3: Unary operator overloading in counter class

The concept of unary operator overloading also applies equally to binary operators. Addition of
two counters without using operator overloading can be performed by a statement such as
counter3 = counterl.AddCounter(counter?) ;
It invokes the member function Addcounter () of counterl object’s class. By overloading the +
Joperator, the above clumsy and dense-looking expression can be represented in a readable and simpli-
fied form as:
counter3 = counterl + counter2;
A detailed discussion on operator overloading can be found in the chapter on Operator Overloading.

3.5 Friend Functions

C++ provides the concept of a friend class whose member functions can access the private members of
another class. A friend function accesses the private data variables of another class. The major differ-
ence between an ordinary class function and a friend function is that the ordinary function accesses the
object that involves the member function, while a friend function requires objects to be passed by
reference or value.

Friend functions play a very important role in operator overloading by providing the flexibility,
which is denied by the member functions of a class. It allows overloading of stream operators (<< or >>)
for stream computation on user defined data types. The only difference between the friend function and
member function is that, the friend function requires all formal arguments to be specified explicitly,
whereas the member function takes first formal argument implicitly and the remaining arguments (if any)
explicitly. Friend functions can either be used with aunary or binary operator.

Chapter 3: C++ at a Glance

Similar to the built-in variables, the user-defined objects can also be read or output using the stream
operators: insertion and extraction operators. In the case of the overloaded << operator, the ostream &
is taken as the first argument of a friend function of a class. The return value of this friend function is of
type ostream &. Similarly, for overloading the >> operator, the istream & is taken as the first argument
of a friend function of a class. The return value of this friend function is of type istream &. In both the
cases, a reference to an object of the current class is taken as a second argument and after storing the
result in its second object, its first argument, the istream object would be returned.

The program counter4 . cpp illustrates the flexibility of overloading the output stream operators

and their usage with the user defined objects.

// counterd.cpp: overloading stream operator cout << value
#include <iostream.h>
class counter

{

private:
int value; // counter value
public:
counter () // No argument constructor
{
value = 0; // initialize counter value to zero
}
counter (int val) // Constructor with one argument
{
value = val; // initialize counter value
}
int GetCounter () // counter Access

{
return value;
}
// overloading increment operator
void operatoc++ () // increment counter
{
value = value, + 1;
}
// overloading decrement operator
void operator --{() // decrement counter
{
value = value - 1; // decrement counter
}
// overloading binary operator
counter operator +(counter counter2);

friend ostream & operator << (ostream & Out, counter & counter Y

}:

// operator function defined outside the class body, hence use ::

counter counter::operator +(counter counter2)

{

counter temp;

// value belongs to counterl and counter2.value is of counter2

temp.value = value + counter2.value;

operator

86 Mastering C++

return temp;
// it is just a friend function, it is nct a member of counter classes
ostream & operator << [ostream & Out, counter & counter)
(
// display all internal data of counter class
cout << counter.value;
// return ocutput stream Out for cascading purpose
return Out;
}
void main ()
{
counter counterl; // calls no argument constructor
counter counter2 = 1 ; // calls 1 argument constructor
cout << "counterl initially " << counterl << endl;
cout << "counter2 initially " << counter?2 << endl;
// increment counter
++counterl;
counter2++;
cout << "counterl cn increment
cout << Mcounter2 on increment
// decrement counter
--counterl;
counter2--;
cout << "counterl on decrement
cout << "counter2 on decrement

" << counterl << endl;
" << counter2 << endl;

n

" << counterl << endl;
" << counter2 << endl;

counter counter3; // calls no argument constructor
counter3 = counterl + counter2; // calls operator+(counter)
cout << "counter3 ='counterl+counter2 = " << counter3;

}

Run

counterl initially = 0
counter? initially =1
counterl on increment
counter2 on increment
counterl on decrement
counter2 on decrement = 1

counter3 = counterl+counter2 =1

Imon
O N

il

The contents of the object counterl can be displayed by using the statement
cout << counterl;
instead of using the statement
cout << counter.GetCounter () ;
This is the same as the use of the stream operator to display the contents of variables of standard data
type. The operator member function

ostream & operator << { ostream & Out, counter & counter);

defined in the counter class displays the contents of the objects of the counter class (see Figure
3.4). The stream classes, istream and ostream are declared in the iostream. h header file.

Chapter 3: C++ at a Glance 87

The input stream operator can also be overloaded to read objects of the counter class, whose
prototype can be:
istream & operator >> (istream & In, counter & counter);
Note that C++ does not allow overloading of operators =, (), [}, and ->as friend operator functions.
however, they can be overloaded as member operator functions.

Instances of the class counter

constructor

counter () ; Client program

/_/

counter counterl;

private members - counter counter2=1;

++ counterl;

L
) { counter2++;
int value;

-- counterl;
% counter2--;

cout << counterl;
| cout << counter2;

T~

Figure 3.4: Operator overloading and friend functions

3.6 Polymorphism~Virtual Functions

In C++, runtime polymorphism is achieved using virtual functions. Virtual functions facilitate dynamic
binding of functions to the appropriate objects. They are the means by which functions of the base
class can be overridden by functions of the derived class.

Virtual functions allow derived class to redefine member functions inherited from a base class.
General programs can then be written that are obvious to the classes of the objects they manipulate,
through dynamic binding. The runtime system will choose the function appropriate to a particular class.

Virtual functions allow programmers to declare functions in a base class that can be redefined in
each derived class. When a pointer to the base class is used with a base or derived class object, the
object to which it points determines the activation of an appropriate member function call. That is, when
a base class pointer points to the object of a derived class, the derived class's member function is
selected and when it points to the object of the base class, the base class's member function is selected
at runtime.

In C++, calls to virtual member functions are linked at runtime, as a result of which an object’s
behavior is determined only at runtime. This binding procedure is termed as /ate binding. The keyword
virtual instructs the compiler that the calls to these member functions are to be linked only at run

88 Mastering C++

time. Thus, the choice of member function to be executed depends on the object of a class. the pointer
is addressing at runtime. The program virtual.cpp illustrates the concept of virtual functions.

/ / virtual.cpp: Binding pointer to base class’s object to base or derived
// objects at runtime and invoking respecdtive members if they are virtual
#include <iostream.h>
class Father
{
protected:
int f_age;
public:
Father(int n)
{
f_age = n;
}
virtual int GetAge(void)
{

return f_age;

Y
// Son inherits all the properties of father
class Son : public Father
{
protected:
int s_age;
public:
Son(int n, int m):Father(n)
{
s_age = m;
}
int GetAge(void)
{
return s_age;

}i
void main ()
{
Father *basep;
basep = new Father (45); // pointer to father
cout << "Father's Age: *;
cout << bésep—>GetAge() << endl; // calls father::GetAge
delete basep;
basep = new Son(45, 20); // pointer to son
cout << "Son's Age: ";
cout << basep->GetAge() << endl; // calls son::GetAge()
delete basep;
}

Run

Father's Age: 45
Son’'s Age: 20

Chapter 3: C++ at a Glance 89

In the base class Father, the statement
virtual int GetAge(void)
indicates that, an invocation of GetAge () through the pointer to an object must be resolved at
runtime based on which class’s object the pointer is pointing to. A pointer to the object of the base
class can be made to point to its derived class.

Instances of the class Father

constructor
Father (int n);

Client program

T~

virtual int GetAge(); Father *basep:

\\basep = new Father (45);
—basep->GetAge();

constructor _. basep=new Son(45,20);

Son(int n,int m):

Father (n) ; e basep->GetAge() ;

/\

int GetAge();

Instances of the class Son

Figure 3.5: Virtual functions and dynamic binding
(base pointer accessing derived objects)
In main (), the statement
Father *basep;
creates a pointer variable to the object of the base class Father and the statement
basep = new Father (45); // pointer to Father
creates an object of the class Father dynamically and assigns its address to the pointer basep. The

statement
cout << basep->GetAge() << endl; // calls father::GetAge

invokes the member function GetAge () of the Father class.

90 Mastering C++

Similarly, the statement

basep = new Son(45, 20); // pointer to son
creates an object of type class Son dynamically and assigns its address to the pointer basep. The
statement

cout << basep->GetAge() << endl; // calls Son::GetAge
invokes the member function GetAge () of the class Son (see Figure 3.5). If a call to a non-virtual
function is made in this case, it will invoke the member function of the base class Fat her instead of the
derived class Son. Note that the same pointer is able to invoke base or derived class’s member function
depending on the class's object to which it is bound (and this is true only with virtual functions).

It is important to note that, virtual functions must be accessed through the pointer to a base class.
However, they can be accessed through objects instead of pointers, but note that the runtime polymor-
phism is achieved only when a virtual function is accessed through the pointer to a base class. Also
another important aspect is that, when a function is defined as virtual in the base class and if the same
function is redefined in the derived class, that function is also treated as virtual function by default.
Only class member functions can be declared as virtual functions. Regular functions and friend func-
tions do not qualify as virtual functions.

3.7 Generic Ciasses—Class Templates

The container class (i.e., a class that holds objects of some other type) is of considerable importance
when implementing data structures. The limitation of such classes to hold objects of any particular data
type can be overcome by declaring that class as a template class. It allows several classes which differ
only in the data type of their data members to be declared with a single declaration.

A class template arguments can be of type strings, function names, and constant expressions, in
addition to template type arguments. Consider the following class template to illustrate, how the com-
piler handles creation of objects using the class templates:

template <class T, int size>
class myclass

{

T arr[size];.

}i

When objects of template class are created using the statement such as,
myclass <float, 10> newl;

the compiler creates the following class:

class myclass

{
float arr(10];

};
Again if a statement such as,
myclass <int, 5> new2;

is encountered for creating the object new2, the compiler creates the following class:

Chapter 3: C++ at a Glance 91

class myclass

{

int arr([5];

}i
The template declaration of the vector class is illustrated in the program vector . cpp. It has a
data member which is a pointer to an array of generic type T. The type T can be changed to int,
£1loat, etc., depending on the type of object to be created.

// vector.cpp: parameterized vector class
#include <iostream.h>

template <class T>

class vector

{

T * v; // changes to int *v, float *v, ..., etc.
int size; // size of vector v
public:

vector (int vector_size)
{
size = vector_size;
v = new T{ vector_size]; //e.g., v=new int[size },if T is int
}
~vector ()

{
delete v;

& elem(int i)

~ g

if(i >= size)
cout << endl << "Error: Out of Range";
return v(il;
}
void show();
¥
template <class T>
void vector<T>::show()
{
for(int 1 = 0; i < size; i++)
cout << elem(i) << ", ";
}
void main()
{
int i;
vector <int> int_vect(5);
vector <float> float_vect(4);
for(i = 0; 1 < 5; i++)
int_vect.elem(i) = i + 1;
for{ i = 0; i < 4; i++)
float_vect.elem{ i) = float(i + 1.5);
cout << "Integer Vector: “;
int_vect.show();

92 Mastering C++

cout << endl << "Floating Vectocr: ";
float_vect.show() ;
}

Run

Integer Vector: 1, 2, 3, 4, 5,
Floating Vector: 1.5, 2.5, 3.5, 4.5,

Note that the class template specification is similar to an ordinary class specification except for the
prefix template <class T> and the use of T in place of the data-type. This prefix informs the
compiler that the class declaration following it is a template and uses T as a type name in the declaration.
Thus, the class vector becomes a parameterized class with the type T as its parameter. The type T
may be substituted by any data type including the user defined types.

In main (), the statements
vector <int> int_vect(5);
vector <float> float_vect(4);
create the vector objects int_vect and float_vect to hold vectors of type integer and floating
point respectively. Once the objects of class template are created, their usage is same as the objects of
non-template classes.

3.8 Exception Handling

An exceptional condition is an error situation that occurs durin g the normal flow of events and prevents
the program from continuing correctly. C++ provides exceptioh handling mechanism for handling error
conditions that should not be ignored by a caller. Error condition such as division of a number by zero
is difficult to predict; however, that can be handled by using exceptions.

C++ offers the following three constructs for handling exceptions:
e try

¢ throw
¢ catch

A block of code in which an exception can occur must be prefixed by the keyword t ry. This block
of code is called try-block. It indicates that the program is prepared for testing the existence of excep-
tions. If an exception occurs, the program flow is interrupted; call to-an exception handler is made if one
exists, otherwise, abort () is invoked.

The exception handler is indicated by the catch keyword and it must be specified immediately after
the try-block. The keyword catch can occur immediately after another catch. Each handler will only
evaluate an exception that matches, or can be conveited to, the type specified in its argument list. Every
exception thrown by the program must be caught and processed by the exception handler. If the
program fails to provide an exception handler for a thrown exception, the program will call the terminate
function.

The mechanism suggests that error handling code must perform the following tasks.

+ Detect the problem causing exception (Hit the exception)
+ Inform that an error has occured (Throw the exception)
¢ Receive the error information (Catch the exception)
 Take cotrective actions (Handle the exceptions)

Chapter 3: C++ at a Glance 93

The program number . cpp illustrates the mechanism of handling exceptions. It has the class
number to store an integer number, the member function read () toread a number from the console
and the member function div () to perform the division operation. It raises an exception if an attempt
is made to divide a number by zero.

// number.cpp: Divide Exceptions, divide by zero exceptions
#include <iostream.h>
class number
{
private:
int num;
public:
void read()
{
cin >> num;
}
class DIVIDE {}; // abstract class used in exceptions
int div(number num2)
{
if(num2.num == 0) // check for zero divisor if yes
throw DIVIDE() ; // raise exception
else
return num / num2.num; // compute and return the result

}i
int main()
{
number numl, num2;
int result;
cout << "Enter Number 1l: “;
numl.read () ;
cout << “"Enter Number 2: *;
num?2 .read () ;
// statements must be enclosed in try block if exception is to be raised
try
{
cout << "trying division operation...";
result = numl.div{ num2);
cout << "succeeded" << endl;
}
catch(number: :DIVIDE) // exception handler block
{
// actions taken in response to exception
cout << "failed" << endl;
cout << "Exception: Divide-By-Zero";
return 1;
}
// no exceptions, display result
cout << *numl/num2 = " << result;
return 0;

94 Mastering C++

Runt

Enter Number 1: 10

Enter Number 2: 2

trying division operation...succeeded
numl/num2 = 5

Run2

Enter Number 1: 10

Enter Number 2: 0

trying division operation...failed
Exception: Divide-By-Zero

In main (), the try-block

try
(

result = numl.div(num2);
}
invokes the member function div () to perform the division operation using the function defined in the
number class. (See Figure 3.6.)

Instance of the class number

Client program

K-\’/

number numl, num2;
~{numl.read();

num2 .read () ;

void read();

private: try

{

|~ result=numl.div(num2);
}

catch(DIVIDE)

{

int num;

"4

int div(number num2) {
try {

if (num2 .num==0)
throw DIVIDE;

}

/__/

Figure 3.6: Exception handling in number class

If any attempt is made to divide by zero, the following statement in div () member function
if(num2.num == 0) // check for zero division if yes
throw DIVIDE() ; // raise exception
detects the same and raises the exception by passing a nameless object of the DIVIDE class. The
following block of code inmain () immediately after the try-block,

Chapter 3: C++ at a Glance 95

catch(number: :DIVIDE)
{
cout << "Exception: Divide-By-Zero";
return 1;
)
will catch the excepiion raised due to a malfunction (divide-by-zero) in the preceding try-block and
executes its (catch-block) body. When an exception is raised and if the exception matches with any of
the catch's exception type. its catch-block will be executed; otherwise, the program terminates. The
execution skips the catch-block and proceeds with the normal operations when no exception is raised.

3.9 Streams Computation

Stream is a name given o the flow of data and it acts as an interface between the program and the input/
output devices. Streams provide a consistent interface irrespective of the device with which they
operate (see Figure 3.7). For instance, the output operation can be performed either on the console or
file: the interface for accessing these devices is the same as shown in the following statements:

cout << "Hello World";

outfile << "Hello World";
The first statement prints the message Hello Worldtoa standard output device whereas the second
statement prints the same in a file to which the variable out £i1le is the file handler.

Monitor Hello char
cout
int
Printer << float
User
DlSk O ObjCC(

Figure 3.7: Consistent stream computation

Input-output operations in C++ are interpreted as a flow of stream of bytes. The program extracts
bytes from the input stream when read operation is initiated and inserts bytes to the output stream when
the output has to be performed.

C++ provides the following predefined stream objects (declared in iostream.h):

cin Standard input (usually keyboard) corresponding to stdin in C.
cout Standard output (usually screen) corresponding to stdout in C.
cerr Standard error output (usually screen) corresponding to stderr in C.
clog A fully-buffered version of cerr (no C equivalent).

The statement
cin >> m;
reads data from the console (keyboard) and stores it into the variable m. The statement

cout << "Hello World" << m;

96 Mastering C++

prints the string message followed by the value stored in the variable m onto the console (monitor). The
statement,

cerr << "Error: Hello World";
prints the string message onto the standard error device (usually monitor). The statement,

clog << "Log Errors";
prints the message to standard error device and displays when the buffer is flushed or \n (new line)
character 1s encountered.

In C++, streams with operator overloading provide a mechanism for filtering. The standard stream
operators << and >> do not know anything about the user-defined data types. They can be overloaded
to operate on user-defined data it¢ms, which comprise operations on basic data items with standard
stream operators. For example, consider the statements:

cout << counterl;

cin »>> counter2;
The data-items counterl and counter?2, are the objects of the counter class (see friend.cpp
program discussed above). The operators >> or << do not know anything about the objects counter1
and ccunter2. These are overloaded in the counter class as member functions. which process the
attributes of counter objects as if they are basic data-items. Collectively, it appears as if the stream
operators are operating on the objects of the class counter. This is possible due to overloading
stream operator$ to operate on the user defined data types.

File Streams

A file is a unit of storage. The file handling technique of C does not support object oriented program-
ming, hence C++ has come out with a new set of classes to deal with files.

As discussed earlier, the standard objects cin and cout have been used to deal with the standard
input and the standard output. The objects cin and cout are declared in iostream.h header file.
There are no such predefined objects for handling disk files. C++ supports the following classes for
handling files:

¢ ifstream - for handling input files.

¢ ofstream - for handling output files.

o fstream - for handling files on which both input and output are done.

These classes are designed to manage the disk files and are declared in the fstream. h header file. To
use file streams, include the following statement in the program:
#include <fstream.h>

The general pattern of accessing the data in a file is similar to the stdio.h functions. First, of
course, the file has to be opened. In all the three classes, a file can be opened by giving a filename as the
first parameter in the constructor itself. For example, the statement,

ifstream infiie("test.txt");
will open the file test . txt for input operation.

The classes ifstream, ofstream, and fstream are derived from the classes istream,
ostream, and iostream respectively to handle file streams and file input/output. The ifstream
is meant for input files and of st ream for output files; the £stream is meant for both the input and
output files.

Chapter 3: C++ at a Glance 97

File Input with ifstream Class

The class ifstream supports input operations. It contains the function open () with the default
input mode. Inherits get (), getline(),read(),seekg(), and tellg () functions fromistream.
The program infile.cpp illustrates the use of ifstream class in file manipulation. It reads the
contents of the file sample. in line by line and prints the same on the console.

// infile.cpp: reads all the names stored in file ‘sample.in’
#include <fstream.h>
#include <process.h>
#include <iostream.h>
void main ()
(.
char buff[80];
ifstream infile; // input file

infile.open("sample.in"); // open file
if(infile.fail()) // open.fail
{
cout << "Error: sample.in non-existent";
exit(1 };
}
while(tinfile.eof()) // until end-of-file do processing
{
infile.getline(buff, 80); // read complete line from file
cout << buff << endl;
}

infile.close();
}

Run
Rajkumar, C-DAC, India
Bjarne Stroustrup, AT & T, USA
Smrithi, Hyderabad, India
Tejaswi, Bangalore, India
The input file sample . in contains the following information before the execution of the program:

Rajkumar, C-DAC, India

Bjarne Stroustrup, AT & T, Usa
Smrithi, Hyderabad, India
Tejaswi, Bangalore, India

In main (), the statement

ifstream infile; // input file

creates the object infile and the statement
infile.open("sample.in"); // open file

opens the file sample.in in the input mode. The statement
if(infile.fail()) // open fail

checks for the status of file open operation. If file-open fails, it returns 1, otherwise 0. The statement
while(!'infile.eof ()) // until end-of-file, do processing

98 Mastering C++

repeats the file reading operation until the end-of-file. And the statement
infile.getline(buff, 80); // read complete line from file

reads a single line from the file or maximum of 80 characters from that line and proceeds to the next line.
The statement,

infile.close();

closes the file and thus preventing it from further manipulation.

File Output with ofstrean Class

The class of st ream supports output operations. It contains the function open () with output mode
as default. It inherits put (), seekp(),tellp(), and write() functions from ostream. The
program outfile.cpp illustrates the use of the class of stream in the file manipulation. It reads
information entered through the keyboard and writes the same into the output file sample.out.

// outfile.cpp: writes all the input into the file ‘sample.out’
#include <fstream.h>
#include <process.h>
#include <iostream.h>
#include <string.h>
void main ()
{
char buff[80];
ofstream outfile; // output file
outfile.open("sample.out"); // open in output mode
if(outfile.fail()) // open fail
{
cout << "Error: sample.out unable to open";
exit(1);
}

// loop until input = "end"
while(1)
{
cin.getline(buff, 80); // read a line from keyboard-
if(strcmp(buff, "end") == 0)
break;
outfile << buff << endl; // write to outmut file

}
outfile.close();

—

=3

Rui
OOP is good
C++ 1s OOP
C++ is good

Note: On execution, the file sample . out has the following:
Q0P is good

C++ is QOP

C++ is good

Chapter 3: C++ at a Glance 99

In main (). the statement
cfstream outfile; // output file
creates the object outfile and the statement
cutfile.open(’sample.out"); // open in output mode
opens the file sample. out in output mode. The statement
if{ outfile.fail()) ;/ open fail
checks for the status of file open. If file open fails. it returns 1, otherwise 0. The statement
cutfile << buff << endl; // write to output file
writes the bu £ £ contents and new-line character to the output file. The syntax of writing to the disk file
resembles the writing to the console.

Guidelines

This chapter has given a glimpse on various prime features of C++. The fundamental construct of C++
i.e..class has been used to explain data encapsulation and abstraction features. More details on this can
be found in chapters 10 and onwards. Other features discussed are inheritance, polymorphism, friend
functions. virtual functions. class templates, exceptions handling, and streams computation.

Review Questions

3.1 State some reasons for C++ gaining popularity over other object-oriented programming languages.

3.2 Date consists of day, month. and year. Can this item be modeled as a class? What are the permis-
sible operations this class necds to support ? Write a complete program having class declaration
and the main () function to create its objects and manipulate them.

3.3 List the various object-oriented featurcs supported by C++. Explain the constructs supported by
C++ to implement them.

3.4 Whatis inheritance ? What are base and derived classes ? Give a suitable example for inheritance.

3.5 What are the different types of access specifiers supported by C++. Explain with a suitable
example.

3.6 What is polymorphism ? Write a program to overload the + operator for manipulating objects of
the Distance class.

3.7 What are friend functions ? Can they access members of a class directly ? Enhance the Date class
such that it allows to read and display its objects using stream operators.

3.8 What are the differences between static binding and late binding ? Explain dynamic binding with
a suitable example.

3.9 What are generic classes? Explain how they are useful. Write an interactive program having
template-based Distance class. Create two objects: one of type integer and another of type float-
ing-point.

3.10 What are exceptions ? What are the constructs supported by C++ to handle exceptions ?

3.11 What are streams ? Write an interactive program to copy a file to another file. Both source and
destination files have to be processed as the objects of file-stream classes.

4

Data Types, Operators and Expressions

4.1 Introduction

Variables and constants are the fundamental elements of any programming language. Variables allow to
name memory locations and use that name to access memory contents instead of accessing it through
the physical address. Constants are those whose value never change during the execution of the
program. Operators are used to specify the type of operation to be carried out on the variables and
constants. Expressions combine the variables and constants to produce new values. The type of an
object (variable/constant) determines the set of values it can represent and various operations that can
be performed on it. When an expression has variables of different types, they need to be coerced (type
converted) before their use. It can be either performed by the compiler implicitly, or by the user explicitly.
C++ qualifiers allow promotion of any fundamental data type. The precedence and associativity of
operators specify the order of evaluation of an expression to generate a valid output.

4.2 Character Set

The C++ character set consists of the upper and lower case alphabets, digits, special characters and
white spaces. The alphabets and digits together constitute the alphanumeric set. The complete charac-
ter set is shown in Table 4.1. The compiler ignores white spaces unless they are a part of a string
constant. White spaces are used to separate words (and sometimes to increase the readability of a
program), but cannot be embedded in the keywords and identifiers.

Alphabets:
Uppercase: A B ...
Lowercase: a b ... z
Digits
0123456789
Special Characters:
, comma < opening angle bracket > closing angle bracket
. period _ underscore (left parenthesis
. semicolon $ dollar sign) right parenthesis
: colon % percent sign [left bracket
number sign ? question mark] right bracket
' apostrophe & ampersand { left brace
" quotation mark A caret } right brace
! exclamation mark * asterisk !/ slash
| vertical bar - minus sign \ blackslash
~ tilde + plussign
White space characters:
blank space newline carriage return
formfeed horizontal tab vertical tab

Table 4.1: C++ character set

